Class 2: Power functions and

Sketching polynomials Math 102 Section 107

Krishanu Sankar

September 8, 2017

Announcements

- (reminder) Course website:
https://wiki.math.ubc.ca
- First WeBWork due Monday
- Diagnostic Test
- Office Hours Today: 9-10am, LSK300B

Today...

- Power functions $a x^{n}$ and asymptotic behavior.

Today...

- Power functions $a x^{n}$ and asymptotic behavior.
- Even and odd functions.

Today...

- Power functions $a x^{n}$ and asymptotic behavior.
- Even and odd functions.
- Graphing simple polynomials.

Today...

- Power functions $a x^{n}$ and asymptotic behavior.
- Even and odd functions.
- Graphing simple polynomials.
- The more "meta" idea: functions can be thought of as objects themselves!

Today...

- Power functions $a x^{n}$ and asymptotic behavior.
- Even and odd functions.
- Graphing simple polynomials.
- The more "meta" idea: functions can be thought of as objects themselves!
- Also - testing our clickers!

Last time: asymptotic behavior

- Small degrees dominate close to $x=0$; large degrees dominate as $x \rightarrow \infty$.

Even and odd functions

Definitions

- An even function $f(x)$ is symmetric about the y axis:

$$
f(x)=f(-x)
$$

Definitions

- An even function $f(x)$ is symmetric about the y axis:

$$
f(x)=f(-x)
$$

- An odd function $f(x)$ is symmetric about the origin:

$$
f(x)=-f(-x)
$$

Even and odd functions

Q1. The function $f(x)=x^{2}+2 x^{4}$ is
A. an odd function
B. an even function
C. both even and odd
D. neither even nor odd
E. not enough information to tell

Even and odd functions

Q1. The function $f(x)=x^{2}+2 x^{4}$ is
A. an odd function
B. an even function
C. both even and odd
D. neither even nor odd
E. not enough information to tell

Even and odd functions

Q2. The function $f(x)=\frac{x^{2}}{1+x^{2}}$ (the quotient of two polynomials is called a rational function) is
A. an odd function
B. an even function
C. both even and odd
D. neither even nor odd
E. not enough information to tell

Even and odd functions

Q2. The function $f(x)=\frac{x^{2}}{1+x^{2}}$ (the quotient of two polynomials is called a rational function) is
A. an odd function
B. an even function
C. both even and odd
D. neither even nor odd
E. not enough information to tell

Even and odd functions

Q3. The function $g(x)=\frac{x^{3}}{1+x^{3}}$ is
A. an odd function
B. an even function
C. both even and odd
D. neither even nor odd
E. not enough information to tell

Even and odd functions

Q3. The function $g(x)=\frac{x^{3}}{1+x^{3}}$ is
A. an odd function
B. an even function
C. both even and odd
D. neither even nor odd
E. not enough information to tell

Power functions and curve sketching

- A polynomial is a sum of any number of power functions.

Power functions and curve sketching

- A polynomial is a sum of any number of power functions.
- Goal: How can we use what we know about power functions to sketch the graph of simple polynomials of the form $a x^{n}+b x^{m}$? (For example, $f(x)=x^{3}-3 x$.)

Power functions and curve sketching

- A polynomial is a sum of any number of power functions.
- Goal: How can we use what we know about power functions to sketch the graph of simple polynomials of the form $a x^{n}+b x^{m}$? (For example, $f(x)=x^{3}-3 x$.)
- Key idea:
- Lower powers dominate near $x=0$.
- Higher powers dominate for x far from 0 .

Power functions and curve sketching

 Example- $y=x^{3}+a x$ is in pre-lecture video and the course notes:

$a<0$

$a=0$

$a>0$

Power functions and curve sketching

 Example- $y=x^{3}+a x$ is in pre-lecture video and the course notes:

$a<0$

$a=0$

$a>0$
- Q4: Sketch a graph of the polynomial $y=x^{3}+a x^{2}$ for $a>0$ and for $a<0$. Find all zeroes.

Power functions and curve sketching

Q5. Which of the functions below has this graph?

$$
\begin{aligned}
& \text { A. } x^{3}-x^{5} \\
& \text { B. } x^{5}-x^{3} \\
& \text { C. } x^{4}+x^{2} \\
& \text { D. } x^{4}-x^{2} \\
& \text { E. } x^{2}-x^{4}
\end{aligned}
$$

Power functions and curve sketching

Q5. Which of the functions below has this graph?

$$
\begin{aligned}
& \text { A. } x^{3}-x^{5} \\
& \text { B. } x^{5}-x^{3} \\
& \text { C. } x^{4}+x^{2} \\
& \text { D. } x^{4}-x^{2} \\
& \text { E. } x^{2}-x^{4}
\end{aligned}
$$

Today...

- Even functions vs. odd functions

Today...

- Even functions vs. odd functions
- Polynomials, ex. $f(x)=a x^{n}+b x^{m}$

Today...

- Even functions vs. odd functions
- Polynomials, ex. $f(x)=a x^{n}+b x^{m}$
- Rational functions: $g(x)=\frac{a x^{n}+b x^{m}}{c x^{\ell}+d x^{k}}$

Today...

- Even functions vs. odd functions
- Polynomials, ex. $f(x)=a x^{n}+b x^{m}$
- Rational functions: $g(x)=\frac{a x^{n}+b x^{m}}{c x^{\ell}+d x^{k}}$
- Easily sketching the graph of simple polynomials:
- Large powers away from $x=0$
- Small powers near $x=0$

Today...

- Even functions vs. odd functions
- Polynomials, ex. $f(x)=a x^{n}+b x^{m}$
- Rational functions: $g(x)=\frac{a x^{n}+b x^{m}}{c x^{\ell}+d x^{k}}$
- Easily sketching the graph of simple polynomials:
- Large powers away from $x=0$
- Small powers near $x=0$
- Challenge: How would we sketch the graphs of rational functions?

Today...

- Even functions vs. odd functions
- Polynomials, ex. $f(x)=a x^{n}+b x^{m}$
- Rational functions: $g(x)=\frac{a x^{n}+b x^{m}}{c x^{l}+d x^{k}}$
- Easily sketching the graph of simple polynomials:
- Large powers away from $x=0$
- Small powers near $x=0$
- Challenge: How would we sketch the graphs of rational functions?
- Next time: Using rational functions to model enzyme catalysis (Michaelis-Menten kinetics).

Today...

- Even functions vs. odd functions
- Polynomials, ex. $f(x)=a x^{n}+b x^{m}$
- Rational functions: $g(x)=\frac{a x^{n}+b x^{m}}{c x^{l}+d x^{k}}$
- Easily sketching the graph of simple polynomials:
- Large powers away from $x=0$
- Small powers near $x=0$
- Challenge: How would we sketch the graphs of rational functions?
- Next time: Using rational functions to model enzyme catalysis (Michaelis-Menten kinetics).
- Check the last slides for related exam problems.

Related Exam Questions

1. When $x=1000$, the function
$g(x)=\frac{6 x^{4}+12 x^{2}+64 x-87}{2 x^{3}-6 x^{2}+x}$ is closet to
A. 0.003
B. 3000
C. 1000000
D. 6
E. 3
2. Sketch the graph of $f(x)=8 x^{2}-x^{5}$.
